Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Phys Rev Lett ; 132(6): 060603, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394595

RESUMO

A high-spin nucleus coupled to a color center can act as a long-lived memory qudit in a spin-photon interface. The germanium vacancy (GeV) in diamond has attracted recent attention due to its excellent spectral properties and provides access to the ten-dimensional Hilbert space of the I=9/2 ^{73}Ge nucleus. Here, we observe the ^{73}GeV hyperfine structure, perform nuclear spin readout, and optically initialize the ^{73}Ge spin into any eigenstate on a µs timescale and with a fidelity of up to ∼84%. Our results establish ^{73}GeV as an optically addressable high-spin quantum platform for a high-efficiency spin-photon interface as well as for foundational quantum physics and metrology.

2.
Rev Sci Instrum ; 92(8): 085106, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470423

RESUMO

Magnetic fields are a standard tool in the toolbox of every physicist and are required for the characterization of materials, as well as the polarization of spins in nuclear magnetic resonance or electron paramagnetic resonance experiments. Quite often, a static magnetic field of sufficiently large, but fixed, magnitude is suitable for these tasks. Here, we present a permanent magnet assembly that can achieve magnetic field strengths of up to 1.5 T over an air gap length of 7 mm. The assembly is based on a Halbach array of neodymium magnets, with the inclusion of the soft magnetic material Supermendur to boost the magnetic field strength inside the air gap. We present the design, simulation, and characterization of the permanent magnet assembly, measuring an outstanding magnetic field stability with a drift rate of |D| < 2.8 ppb/h. Our measurements demonstrate that this assembly can be used for spin qubit experiments inside a dilution refrigerator, successfully replacing the more expensive and bulky superconducting solenoids.

3.
Nat Commun ; 12(1): 4114, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226564

RESUMO

A fault-tolerant quantum processor may be configured using stationary qubits interacting only with their nearest neighbours, but at the cost of significant overheads in physical qubits per logical qubit. Such overheads could be reduced by coherently transporting qubits across the chip, allowing connectivity beyond immediate neighbours. Here we demonstrate high-fidelity coherent transport of an electron spin qubit between quantum dots in isotopically-enriched silicon. We observe qubit precession in the inter-site tunnelling regime and assess the impact of qubit transport using Ramsey interferometry and quantum state tomography techniques. We report a polarization transfer fidelity of 99.97% and an average coherent transfer fidelity of 99.4%. Our results provide key elements for high-fidelity, on-chip quantum information distribution, as long envisaged, reinforcing the scaling prospects of silicon-based spin qubits.

4.
Nature ; 580(7803): 350-354, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296190

RESUMO

Quantum computers are expected to outperform conventional computers in several important applications, from molecular simulation to search algorithms, once they can be scaled up to large numbers-typically millions-of quantum bits (qubits)1-3. For most solid-state qubit technologies-for example, those using superconducting circuits or semiconductor spins-scaling poses a considerable challenge because every additional qubit increases the heat generated, whereas the cooling power of dilution refrigerators is severely limited at their operating temperature (less than 100 millikelvin)4-6. Here we demonstrate the operation of a scalable silicon quantum processor unit cell comprising two qubits confined to quantum dots at about 1.5 kelvin. We achieve this by isolating the quantum dots from the electron reservoir, and then initializing and reading the qubits solely via tunnelling of electrons between the two quantum dots7-9. We coherently control the qubits using electrically driven spin resonance10,11 in isotopically enriched silicon12 28Si, attaining single-qubit gate fidelities of 98.6 per cent and a coherence time of 2 microseconds during 'hot' operation, comparable to those of spin qubits in natural silicon at millikelvin temperatures13-16. Furthermore, we show that the unit cell can be operated at magnetic fields as low as 0.1 tesla, corresponding to a qubit control frequency of 3.5 gigahertz, where the qubit energy is well below the thermal energy. The unit cell constitutes the core building block of a full-scale silicon quantum computer and satisfies layout constraints required by error-correction architectures8,17. Our work indicates that a spin-based quantum computer could be operated at increased temperatures in a simple pumped 4He system (which provides cooling power orders of magnitude higher than that of dilution refrigerators), thus potentially enabling the integration of classical control electronics with the qubit array18,19.

5.
Nat Commun ; 11(1): 797, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047151

RESUMO

Once the periodic properties of elements were unveiled, chemical behaviour could be understood in terms of the valence of atoms. Ideally, this rationale would extend to quantum dots, and quantum computation could be performed by merely controlling the outer-shell electrons of dot-based qubits. Imperfections in semiconductor materials disrupt this analogy, so real devices seldom display a systematic many-electron arrangement. We demonstrate here an electrostatically confined quantum dot that reveals a well defined shell structure. We observe four shells (31 electrons) with multiplicities given by spin and valley degrees of freedom. Various fillings containing a single valence electron-namely 1, 5, 13 and 25 electrons-are found to be potential qubits. An integrated micromagnet allows us to perform electrically-driven spin resonance (EDSR), leading to faster Rabi rotations and higher fidelity single qubit gates at higher shell states. We investigate the impact of orbital excitations on single qubits as a function of the dot deformation and exploit it for faster qubit control.

6.
Nat Commun ; 10(1): 5500, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796728

RESUMO

Single-electron spin qubits employ magnetic fields on the order of 1 Tesla or above to enable quantum state readout via spin-dependent-tunnelling. This requires demanding microwave engineering for coherent spin resonance control, which limits the prospects for large scale multi-qubit systems. Alternatively, singlet-triplet readout enables high-fidelity spin-state measurements in much lower magnetic fields, without the need for reservoirs. Here, we demonstrate low-field operation of metal-oxide-silicon quantum dot qubits by combining coherent single-spin control with high-fidelity, single-shot, Pauli-spin-blockade-based ST readout. We discover that the qubits decohere faster at low magnetic fields with [Formula: see text] µs and [Formula: see text] µs at 150 mT. Their coherence is limited by spin flips of residual 29Si nuclei in the isotopically enriched 28Si host material, which occur more frequently at lower fields. Our finding indicates that new trade-offs will be required to ensure the frequency stabilization of spin qubits, and highlights the importance of isotopic enrichment of device substrates for the realization of a scalable silicon-based quantum processor.

7.
Nature ; 569(7757): 532-536, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31086337

RESUMO

Universal quantum computation will require qubit technology based on a scalable platform1, together with quantum error correction protocols that place strict limits on the maximum infidelities for one- and two-qubit gate operations2,3. Although various qubit systems have shown high fidelities at the one-qubit level4-10, the only solid-state qubits manufactured using standard lithographic techniques that have demonstrated two-qubit fidelities near the fault-tolerance threshold6 have been in superconductor systems. Silicon-based quantum dot qubits are also amenable to large-scale fabrication and can achieve high single-qubit gate fidelities (exceeding 99.9 per cent) using isotopically enriched silicon11,12. Two-qubit gates have now been demonstrated in a number of systems13-15, but as yet an accurate assessment of their fidelities using Clifford-based randomized benchmarking, which uses sequences of randomly chosen gates to measure the error, has not been achieved. Here, for qubits encoded on the electron spin states of gate-defined quantum dots, we demonstrate Bell state tomography with fidelities ranging from 80 to 89 per cent, and two-qubit randomized benchmarking with an average Clifford gate fidelity of 94.7 per cent and an average controlled-rotation fidelity of 98 per cent. These fidelities are found to be limited by the relatively long gate times used here compared with the decoherence times of the qubits. Silicon qubit designs employing fast gate operations with high Rabi frequencies16,17, together with advanced pulsing techniques18, should therefore enable much higher fidelities in the near future.

8.
G Chir ; 34(5): 315-318, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30444481

RESUMO

Spontaneous urinary bladder perforation is a very rare disease. The main cause of urinary perforation, indeed, is a damage to the urinary bladder wall by blunt or penetrating trauma. There are only few idiopathic spontaneous rupture of urinary bladder (ISRUB) cases reported in the literature. Pre-operative diagnosis is very difficult due to similar symptoms, laboratory and imaging findings of a gastrointestinal perforation that is usually excluded intraoperatively. Herein we report a case of a 91-year-old man presented to the emergency department with a spontaneous bladder perforation mimicking an ileal perforation.


Assuntos
Erros de Diagnóstico , Doenças do Íleo/diagnóstico , Perfuração Intestinal/diagnóstico , Doenças do Jejuno/diagnóstico , Doenças da Bexiga Urinária/diagnóstico , Abdome Agudo/etiologia , Idoso de 80 Anos ou mais , Emergências , Humanos , Laparotomia , Masculino , Peritonite/etiologia , Ruptura Espontânea , Técnicas de Sutura , Tomografia Computadorizada por Raios X , Doenças da Bexiga Urinária/complicações , Doenças da Bexiga Urinária/diagnóstico por imagem , Doenças da Bexiga Urinária/cirurgia
9.
Nat Commun ; 9(1): 4370, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375392

RESUMO

Silicon quantum dot spin qubits provide a promising platform for large-scale quantum computation because of their compatibility with conventional CMOS manufacturing and the long coherence times accessible using 28Si enriched material. A scalable error-corrected quantum processor, however, will require control of many qubits in parallel, while performing error detection across the constituent qubits. Spin resonance techniques are a convenient path to parallel two-axis control, while Pauli spin blockade can be used to realize local parity measurements for error detection. Despite this, silicon qubit implementations have so far focused on either single-spin resonance control, or control and measurement via voltage-pulse detuning in the two-spin singlet-triplet basis, but not both simultaneously. Here, we demonstrate an integrated device platform incorporating a silicon metal-oxide-semiconductor double quantum dot that is capable of single-spin addressing and control via electron spin resonance, combined with high-fidelity spin readout in the singlet-triplet basis.

10.
Nat Nanotechnol ; 12(1): 61-66, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27749833

RESUMO

Coherent dressing of a quantum two-level system provides access to a new quantum system with improved properties-a different and easily tunable level splitting, faster control and longer coherence times. In our work we investigate the properties of the dressed, donor-bound electron spin in silicon, and assess its potential as a quantum bit in scalable architectures. The two dressed spin-polariton levels constitute a quantum bit that can be coherently driven with an oscillating magnetic field, an oscillating electric field, frequency modulation of the driving field or a simple detuning pulse. We measure coherence times of and , one order of magnitude longer than those of the undressed spin. Furthermore, the use of the dressed states enables coherent coupling of the solid-state spins to electric fields and mechanical oscillations.

11.
Nature ; 526(7573): 410-4, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26436453

RESUMO

Quantum computation requires qubits that can be coupled in a scalable manner, together with universal and high-fidelity one- and two-qubit logic gates. Many physical realizations of qubits exist, including single photons, trapped ions, superconducting circuits, single defects or atoms in diamond and silicon, and semiconductor quantum dots, with single-qubit fidelities that exceed the stringent thresholds required for fault-tolerant quantum computing. Despite this, high-fidelity two-qubit gates in the solid state that can be manufactured using standard lithographic techniques have so far been limited to superconducting qubits, owing to the difficulties of coupling qubits and dephasing in semiconductor systems. Here we present a two-qubit logic gate, which uses single spins in isotopically enriched silicon and is realized by performing single- and two-qubit operations in a quantum dot system using the exchange interaction, as envisaged in the Loss-DiVincenzo proposal. We realize CNOT gates via controlled-phase operations combined with single-qubit operations. Direct gate-voltage control provides single-qubit addressability, together with a switchable exchange interaction that is used in the two-qubit controlled-phase gate. By independently reading out both qubits, we measure clear anticorrelations in the two-spin probabilities of the CNOT gate.

12.
J Phys Condens Matter ; 27(15): 154204, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25783169

RESUMO

To expand the capabilities of semiconductor devices for new functions exploiting the quantum states of single donors or other impurity atoms requires a deterministic fabrication method. Ion implantation is a standard tool of the semiconductor industry and we have developed pathways to deterministic ion implantation to address this challenge. Although ion straggling limits the precision with which atoms can be positioned, for single atom devices it is possible to use post-implantation techniques to locate favourably placed atoms in devices for control and readout. However, large-scale devices will require improved precision. We examine here how the method of ion beam induced charge, already demonstrated for the deterministic ion implantation of 14 keV P donor atoms in silicon, can be used to implant a non-Poisson distribution of ions in silicon. Further, we demonstrate the method can be developed to higher precision by the incorporation of new deterministic ion implantation strategies that employ on-chip detectors with internal charge gain. In a silicon device we show a pulse height spectrum for 14 keV P ion impact that shows an internal gain of 3 that has the potential of allowing deterministic implantation of sub-14 keV P ions with reduced straggling.

13.
J Phys Condens Matter ; 27(15): 154205, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25783435

RESUMO

Building upon the demonstration of coherent control and single-shot readout of the electron and nuclear spins of individual (31)P atoms in silicon, we present here a systematic experimental estimate of quantum gate fidelities using randomized benchmarking of 1-qubit gates in the Clifford group. We apply this analysis to the electron and the ionized (31)P nucleus of a single P donor in isotopically purified (28)Si. We find average gate fidelities of 99.95% for the electron and 99.99% for the nuclear spin. These values are above certain error correction thresholds and demonstrate the potential of donor-based quantum computing in silicon. By studying the influence of the shape and power of the control pulses, we find evidence that the present limitation to the gate fidelity is mostly related to the external hardware and not the intrinsic behaviour of the qubit.

14.
Nat Nanotechnol ; 9(12): 981-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25305743

RESUMO

Exciting progress towards spin-based quantum computing has recently been made with qubits realized using nitrogen-vacancy centres in diamond and phosphorus atoms in silicon. For example, long coherence times were made possible by the presence of spin-free isotopes of carbon and silicon. However, despite promising single-atom nanotechnologies, there remain substantial challenges in coupling such qubits and addressing them individually. Conversely, lithographically defined quantum dots have an exchange coupling that can be precisely engineered, but strong coupling to noise has severely limited their dephasing times and control fidelities. Here, we combine the best aspects of both spin qubit schemes and demonstrate a gate-addressable quantum dot qubit in isotopically engineered silicon with a control fidelity of 99.6%, obtained via Clifford-based randomized benchmarking and consistent with that required for fault-tolerant quantum computing. This qubit has dephasing time T2* = 120 µs and coherence time T2 = 28 ms, both orders of magnitude larger than in other types of semiconductor qubit. By gate-voltage-tuning the electron g*-factor we can Stark shift the electron spin resonance frequency by more than 3,000 times the 2.4 kHz electron spin resonance linewidth, providing a direct route to large-scale arrays of addressable high-fidelity qubits that are compatible with existing manufacturing technologies.

15.
Phys Rev Lett ; 112(11): 117202, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24702408

RESUMO

A single-molecule magnet placed in a magnetic field perpendicular to its anisotropy axis can be truncated to an effective two-level system, with easily tunable energy splitting. The quantum coherence of the molecular spin is largely determined by the dynamics of the surrounding nuclear spin bath. Here we report the measurement of the nuclear spin-lattice relaxation rate 1/T1n in a single crystal of the single-molecule magnet Mn12-ac, at T ≈ 30 mK in perpendicular fields B⊥ up to 9 T. The relaxation channel at B ≈ 0 is dominated by incoherent quantum tunneling of the Mn12-ac spin S, aided by the nuclear bath itself. However for B⊥>5 T we observe an increase of 1/T1n by several orders of magnitude up to the highest field, despite the fact that the molecular spin is in its quantum mechanical ground state. This striking observation is a consequence of the zero-point quantum fluctuations of S, which allow it to mediate the transfer of energy from the excited nuclear spin bath to the crystal lattice at much higher rates. Our experiment highlights the importance of quantum fluctuations in the interaction between an "effective two-level system" and its surrounding spin bath.

16.
Proc Natl Acad Sci U S A ; 110(34): 13803-8, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23922388

RESUMO

Polymeric microspheres (MSs) have received attention for their potential to improve the delivery of drugs with poor oral bioavailability. Although MSs can be absorbed into the absorptive epithelium of the small intestine, little is known about the physiologic mechanisms that are responsible for their cellular trafficking. In these experiments, nonbiodegradable polystyrene MSs (diameter range: 500 nm to 5 µm) were delivered locally to the jejunum or ileum or by oral administration to young male rats. Following administration, MSs were taken up rapidly (≤ 5 min) by the small intestine and were detected by transmission electron microscopy and confocal laser scanning microscopy. Gel permeation chromatography confirmed that polymer was present in all tissue samples, including the brain. These results confirm that MSs (diameter range: 500 nm to 5 µm) were absorbed by the small intestine and distributed throughout the rat. After delivering MSs to the jejunum or ileum, high concentrations of polystyrene were detected in the liver, kidneys, and lungs. The pharmacologic inhibitors chlorpromazine, phorbol 12-myristate 13-acetate, and cytochalasin D caused a reduction in the total number of MSs absorbed in the jejunum and ileum, demonstrating that nonphagocytic processes (including endocytosis) direct the uptake of MSs in the small intestine. These results challenge the convention that phagocytic cells such as the microfold cells solely facilitate MS absorption in the small intestine.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Trânsito Gastrointestinal/fisiologia , Absorção Intestinal/fisiologia , Intestino Delgado/metabolismo , Microesferas , Poliestirenos/farmacocinética , Animais , Clorpromazina/farmacologia , Cromatografia em Gel , Citocalasina D/farmacologia , Absorção Intestinal/efeitos dos fármacos , Intestino Delgado/ultraestrutura , Masculino , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Poliestirenos/administração & dosagem , Ratos , Acetato de Tetradecanoilforbol/farmacologia
17.
Nat Commun ; 4: 2069, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23804134

RESUMO

Although silicon is a promising material for quantum computation, the degeneracy of the conduction band minima (valleys) must be lifted with a splitting sufficient to ensure the formation of well-defined and long-lived spin qubits. Here we demonstrate that valley separation can be accurately tuned via electrostatic gate control in a metal-oxide-semiconductor quantum dot, providing splittings spanning 0.3-0.8 meV. The splitting varies linearly with applied electric field, with a ratio in agreement with atomistic tight-binding predictions. We demonstrate single-shot spin read-out and measure the spin relaxation for different valley configurations and dot occupancies, finding one-electron lifetimes exceeding 2 s. Spin relaxation occurs via phonon emission due to spin-orbit coupling between the valley states, a process not previously anticipated for silicon quantum dots. An analytical theory describes the magnetic field dependence of the relaxation rate, including the presence of a dramatic rate enhancement (or hot-spot) when Zeeman and valley splittings coincide.

18.
Nat Commun ; 4: 2017, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23774081

RESUMO

The spin states of an electron bound to a single phosphorus donor in silicon show remarkably long coherence and relaxation times, which makes them promising building blocks for the realization of a solid-state quantum computer. Here we demonstrate, by high-fidelity (93%) electrical spin readout, that a long relaxation time T1 of about 2 s, at B=1.2 T and T≈100 mK, is also characteristic of electronic spin states associated with a cluster of few phosphorus donors, suggesting their suitability as hosts for spin qubits. Owing to the difference in the hyperfine coupling, electronic spin transitions of such clusters can be sufficiently distinct from those of a single phosphorus donor. Our atomistic tight-binding calculations reveal that when neighbouring qubits are hosted by a single phosphorus atom and a cluster of two phosphorus donors, the difference in their electron spin resonance frequencies allows qubit rotations with error rates ≈10(-4). These results provide a new approach to achieving individual qubit addressability.

19.
Adv Drug Deliv Rev ; 65(6): 811-21, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23608641

RESUMO

Successful administration of therapeutic proteins via the oral route has long eluded the drug delivery community; a variety of factors, both physical and physiological, have hindered the myriad approaches to increasing the bioavailability of orally administered therapeutic proteins, including: 1) pre-systemic degradation by enzymes and 2) poor penetration of the intestinal mucosa and epithelium. Even when bypassing the harsh, acidic environment of the stomach, the intestines pose significant obstacles to systemic uptake. For example, the lining of the gastrointestinal tract comprises a thick wall of epithelial cells covered by a layer of polysaccharides and mucus. In this review, we will discuss the biology underlying intestinal uptake of protein-containing, biodegradable nanoparticles, review insulin delivery as the most accepted model for oral delivery of proteins, and present a variety of new material systems enabling novel approaches to oral protein delivery which we believe will bring to bear the next therapeutic advances in our field.


Assuntos
Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Nanopartículas/administração & dosagem , Preparações Farmacêuticas/administração & dosagem , Proteínas/administração & dosagem , Administração Oral , Disponibilidade Biológica , Trato Gastrointestinal/metabolismo , Humanos , Insulina/administração & dosagem , Insulina/farmacocinética , Absorção Intestinal/fisiologia , Nanopartículas/química , Polímeros/farmacocinética , Transcitose/fisiologia
20.
Curr Mol Med ; 13(8): 1250-69, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23448341

RESUMO

Skin is considered as the border defining the limits of the body from the external world and functions as a barrier between the two. In this capacity, it has evolved to be an integral part of the innate and adaptive immune system. Although many reviews have described skin inflammation and processes that lead to its clinical manifestations, we are not aware of any reviews that have focused on immunologic activity occurring in the absence of any visual inflammatory cues. In this review, we discuss the importance of subclinical inflammation in human skin and its relevance to innate immune surveillance under physiologic conditions. Reactive oxygen species generated by metabolic processes, ultraviolet radiation or oxidizers may damage cells, initiating proinflammatory cascades. In addition to serving as structural skin components, keratinocytes have significant immunologic activity: they secrete proinflammatory cytokines and mediators, including interleukin (IL)-1α, IL-6, IL-10, tumor necrosis factor-α and granulocyte-macrophage colony-stimulating factor. Infant skin is particularly susceptible to irritation, inflammation and infection, since skin barrier function is not fully developed after birth and continues to mature throughout the first few years of life. Non-invasive methods such as fluorescence spectroscopy, spectral imaging and diffuse reflectance spectroscopy, as well as minimally invasive tape stripping, can be used to assess subclinical inflammatory markers in vivo, including erythema, epidermal cell proliferation rate and cytokine concentrations. Appropriately formulated skin care products may help maintain skin barrier integrity and enhance its capacity. In the future, assessment of subclinical inflammation may help clinicians prevent acute or chronic inflammatory conditions of the skin.


Assuntos
Dermatite/etiologia , Pele/imunologia , Pele/metabolismo , Envelhecimento , Alérgenos/imunologia , Biomarcadores , Citocinas/metabolismo , Dermatite/diagnóstico , Dermatite/prevenção & controle , Dermatite/terapia , Humanos , Mediadores da Inflamação/metabolismo , Fatores de Risco , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...